內(nèi)容簡介:
斐波那契數(shù)列通項(xiàng)公式(分類:教學(xué)視頻)斐波那契數(shù)列通項(xiàng)公式斐波那契數(shù)列(Fibonacci sequence),又稱黃金分割數(shù)列、因數(shù)學(xué)家列昂納多·斐波那契斐波那契數(shù)列通項(xiàng)公式以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”,指的是這樣一個(gè)數(shù)列:1、1、2、3、5、8、13、21、34、……在數(shù)學(xué)上,斐波納契數(shù)列以如下被以遞歸的方法定義:F(0)=1,F(xiàn)(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在現(xiàn)代物理、準(zhǔn)晶體結(jié)構(gòu)、化學(xué)等領(lǐng)域,斐波納契數(shù)列都有直接的應(yīng)用,為此,美國數(shù)學(xué)會(huì)從1963起出版了以《斐波納契數(shù)列季刊》為名的一份數(shù)學(xué)雜志,用于專門刊載這方面的研究成果。
斐波那契數(shù)列通項(xiàng)公式
斐波那契數(shù)列通項(xiàng)公式
方法二:待定系數(shù)法構(gòu)造等比數(shù)列1(初等代數(shù)解法)
設(shè)常數(shù)r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
則r+s=1, -rs=1。
n≥3時(shí),有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
F⑶-r*F⑵=s*[F⑵-r*F⑴]。
聯(lián)立以上n-2個(gè)式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。
∵s=1-r,F(xiàn)⑴=F⑵=1。
上式可化簡得:斐波那契數(shù)列通項(xiàng)公式
F(n)=s^(n-1)+r*F(n-1)。
那么:
F(n)=s^(n-1)+r*F(n-1)。
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(這是一個(gè)以s^(n-1)為首項(xiàng)、以r^(n-1)為末項(xiàng)、r/s為公比的等比數(shù)列的各項(xiàng)的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
r+s=1, -rs=1的一解為 s=(1+√5)/2,r=(1-√5)/2。
則F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n};歡迎觀看斐波那契數(shù)列通項(xiàng)公式的視頻。(更新時(shí)間:2017.3.27 14:31)
- 斐波那契數(shù)列與股市
- 斐波那契數(shù)列與股市(分類:)斐波那契數(shù)列與股市時(shí)間周期理論是股價(jià)漲跌的根本原因之一,斐波那契數(shù)列與股市它能夠解釋大多數(shù)市場漲跌的奧秘。......
- 斐波那契數(shù)列算法
- 斐波那契數(shù)列算法(分類:)斐波那契數(shù)列算法斐波那契數(shù)列問題是算法學(xué)習(xí)者必然接觸到的問題,作為經(jīng)典問題,斐波那契數(shù)列算法首次接觸時(shí)一般是......
- 斐波那契數(shù)列的故事
- 斐波那契數(shù)列的故事(分類:)斐波那契數(shù)列的故事斐波那契數(shù)列(Fibonacci sequence),斐波那契數(shù)列的故事又稱黃金分割數(shù)列......
- 斐波那契數(shù)列的證明
- 斐波那契數(shù)列的證明(分類:)斐波那契數(shù)列的證明斐波那契數(shù)列,“斐波那契數(shù)列”的發(fā)明者,斐波那契數(shù)列的證明是意大......
- 斐波那契數(shù)列的意義
- 斐波那契數(shù)列的意義(分類:教學(xué)視頻) 斐波那契數(shù)列的意義“斐波那契數(shù)列”的發(fā)明者,是意大......